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Abstract  

Problem solving is both a primary goal and a standard teaching technique in introductory 

physics classes at the university level.  To assess the utility of various pedagogical 

materials and techniques, it is necessary to determine student problem solving 

performance in the authentic situation of the course.  However, this performance 

depends on both the student’s problem-solving skill and the problem difficulty.  This 

dissertation proposes a technique for measuring the relative difficulty of the type of 

physics problems typically used in introductory physics courses for physical science and 

engineering students.  Four categories, the problem context, the physics principles, the 

mathematical complexity, and the number of words in the problem, were constructed 

based on current cognitive theories.  To test the validity of this measure, 3552 student 

grades on 20 final examination problems, spanning the full range of topics in a one-year 

introductory physics course, were compared to each problem difficulty rating.  Only two 

categories, physics principles and mathematical complexity, were needed to account for 

most of the student problem solving variance. Using the average of those two categories, 

there was an 88% Pearson correlation between the difficulty score and the average 

student problem solving grade. The null hypothesis, that the correlation between 

difficulty score and the average student problem solving grade was not significantly 

different from zero, had a probability, P value,  < 0.001.  Three experts used the 

difficulty measure to test its reliability and had a pairwise Spearman correlation between 

their difficulty ratings of greater than 94%.  
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Chapter 1: Introduction 

1.1 Introduction 

Jobs that require at least a Science, Technology, Engineering and Mathematics (STEM) 

bachelor’s degree have grown to comprise around 20% of the workforce over the past 

decade [1]. To avoid a 1 million STEM job candidate shortfall over the next decade, the 

President’s Council of Advisors on Science and Technology emphasized the need to 

improve retention of STEM students in their 2012 report [2].  Currently, only 40% of 

STEM majors successfully complete their degrees [3]. 

 

Studies that have explored factors involved in STEM degree retention [4, 5, 6, 7, 8, 9] 

have found similar results. Independent of their prior preparation, indicated by high 

school GPA and ACT/SAT scores, introductory physics along with introductory 

mathematics and chemistry courses are key early college barriers for many STEM major 

students.   

 

Changing the pedagogy of introductory physics courses to better support students in 

overcoming that barrier is a focus of discipline-based physics education research (PER).  

To have an impact on such courses, any changes must have a noticeable effect on the 

normal assessment of students that are based to a great extent on their solutions to 

quantitative examination questions that are usually called problems.   How students 
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perform on solving such problems depends on their difficulty as well as their physics 

knowledge and problem solving skills. 

 

This study evolved from a desire to compare students’ problem solving performance in 

courses using different pedagogies in the authentic environment when they have 

different instructors who could be at different institutions.  To do so requires a simple, 

reproducible, and quantifiable method to measure the difficulty of problems used in 

regular student tests. 

 

1.2 Research Motivation  

 

Many physics instructors choose to assess student performance in their introductory 

classes primarily using open response problems. Their beliefs, born out by research 

literature, is that free-response problems provide rich, fine-grained information about 

students’ reasoning and such problems emphasize the importance of synthesizing 

knowledge [10].   

 

Studying how students do on exam problems is complicated by the tradition that every 

instructor makes up and grades their own problems.  These grades are the typical data 

available from an introductory physics course and are a means for researchers to test the 

consistency between student performance and the efficacy of classroom learning with a 

large statistical power. An instrument to test the fidelity of instructor grading of student 
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solutions of these problems has been developed previously [11], and has shown that 

instructor grading can be a reasonably accurate assessment of students’ problem-solving 

performance. To use this grading to make comparisons among pedagogies, instructors, 

institutions, or curriculum, it is important to be able to gauge the relative difficulty of 

those problems in addition to the fidelity of the grading to the quality of student 

solutions. Although determining the difficulty of instructor generated exam problems 

has been identified as an important issue in PER [12], there currently exists no 

established way of doing so. 

 

However, there are theories about students’ difficulty in solving physics problems. In 

addition to difficulties understanding the physics ideas necessary to solve a problem, 

students’ problem-solving is also constrained by their ability to process information to 

reach a solution [12]. Inspired by those established theories about student difficulty, 

quantifying the relative difficulty of a problem seems a promising research direction. 

This dissertation presents such a difficulty measure for physics problems appropriate for 

those typically used in introductory physics courses. The resulting instrument is based 

on (1) information processing theory stressing the limited capability of short term and 

working memory together with (2) cognitive models of mental resources and ontological 

categories that contribute to the cognitive load.  

 

 

1.3 Overview of the Dissertation  
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This dissertation has five chapters that set forth the background of the research questions 

and give their results.  It is important to note that throughout the dissertation the word 

“problem” refers to what are generally called problems by instructors and students of 

introductory physics and not to the broader class of real-world problems addressed in 

cognitive science. 

 

Chapter 1 describes the motivation and need for a quantitative problem difficulty 

measure in introductory physics, lists the research questions addressed in this 

dissertation, and gives an overview each chapter of the dissertation.   

 

Chapter 2 provides a brief summary of the current state of research to determine relative 

problem difficulty for introductory physics students, especially in physics education. It 

also describes the information processing background used to determine the problem 

difficulty measure developed for this dissertation.  This chapter also includes theories of 

the origin of misconceptions because these misconceptions can lead to cognitive 

dissonance when students solve problems.  In the framework of information processing 

theory, this dissonance causes a higher cognitive load.   

 

 

Chapter 3 begins with a description of the difficulty measure categories, how each of 

these categories is scored, and how the categories are related to the theories and previous 

research outlined in Chapter 2. This chapter also illustrates the application of the 

measure to typical exam problems from introductory physics courses. 
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Chapter 4 presents the data supporting the validity and reliability of the problem 

difficulty measuring instrument.  

 

Chapter 5 summarizes the results and limitations of the study and discusses the usability 

of the measure including some possible future applications.  

 

1.4 Research Questions 

This study seeks to answer the following research questions: 

RQ1: How does the difficulty of a problem as measured by the instrument described in 

this dissertation correlate with the average student performance on problems in 

introductory physics?  This addresses the validity of the measure. 

RQ2: How well do different raters using this difficulty measure agree on the difficulty 

level? This addresses the reliability of the measure. 
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Chapter 2 Literature Review 

2.1 Introduction 

This chapter summarizes the factors that contribute to the difficulties typically faced by 

students when solving exam problems in introductory physics and relates them to the 

theory of information processing . It also presents a summary of previous research 

designed to determine the relative difficulty of the type of open response exam problems 

commonly used in introductory physics exams.  Although the categories that comprise 

the difficulty measure are inspired by the theory and empirical research presented in this 

chapter, they are not derived from them.  For the purpose of this dissertation, the success 

of the difficulty measure will be determined by how well it predicts the performance of 

students on authentic physics exam problems. 

 

2.2 External and Internal Factors of Problem Difficulty 

Jonassen [13] suggests that both external and internal factors contribute to problem 

difficulty. He relates the internal factors to the personal characteristics of the problem 

solver, such as prior experience, prior knowledge, strategies used, and epistemological 

development. These factors are seldom under the control of the instructor.   To control 

these individual variations in determining the difficulty level of problems, I have used a 

large student population that averages over such internal factors.  
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External factors are inherent features of the problem, such as abstraction and continuity.  

Bassok [14] explained these two important external attributes of problems: abstraction 

refers to the content and context of problem features that either facilitate or impede the 

student’s mapping of one problem to another. Most classroom problems are more 

abstract than most everyday problems which are embedded in rich contexts. Continuity 

is the degree to which attributes of problems remain the same or change from problem to 

problem. High continuity problems are more easily solved and transferred than low 

continuity problems.  Both abstraction and continuity impact how students process the 

information necessary to solve a problem. 

 

According to Meacham and Emont [15] , problems also vary in terms of complexity. 

They describe problem complexity as a function of external factors, such as the number 

of concepts, functions, or variables involved in the problem; the number of interactions 

among them; and the predictability of their behavior. Complexity has direct implications 

for working memory requirements. The more complex a problem, the more difficult it 

will be for the problem solver to actively process the components of the problem. 

 

2.3 Information Processing Theory 

Information processing theory deals with the interaction between the internal and 

external aspects of a problem.  A problem, from a traditional, information-processing 

perspective, consists of sets of initial states, goal states, and path constraints [16].  For a 

situation to become a problem the interaction of the participant, activities, and context 
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impedes the arrival at the goal state.  A solution occurs when the solver finds a path 

between their initial state of thinking about the problem and their goal state. 

 

A person’s problem-solving is constrained by their ability to process the information 

necessary for them to reach a solution. According to information processing theory [17, 

18, 19, 20], human problem solving can be modeled as an iterative process of 

representation and searching. The solution process proceeds when a student moves from 

an initial state of acquiring a problem’s situation to their interpretation of the problem’s 

goal by using appropriate operations like representing and searching. One such operation 

is translating the problem into a representation or representations that organizes 

information in a form they can more easily use. Then a student engages in a search 

process during which they select a method or methods to achieve the goal of the 

problem.  They attempt to apply their search process either to achieve the problem’s goal 

or a sub-goal that will move them toward their goal.  They proceed from sub-goal 

toward the goal until a satisfactory solution is achieved or the search for a solution is 

abandoned. If constructing an internal representation of the problem situation’s goal or 

sub-goal activates a single method or schema, its solution is implemented immediately. 

If no schema is activated, then the solver engages in more general search strategies [21] 

to locate less inclusive procedures that can be assembled into a solution process. 

 

Carrying out this process of problem solving takes place in three distinct information 

processing mental environments: short-term memory (STM), “working” memory, and 

long-term memory. Short-term memory and working memory can only hold a small 



9 

amount of information for a limited time, whereas long-term memory is essentially 

unlimited [20] . For this reason, I will combine the functioning of STM and working 

memory and usually call it STM for the purposes of this dissertation.  In order to use 

information stored in long-term memory, it must be brought into working memory. If 

problem information and processing methodology exceed the limits of that memory, a 

solver experiences cognitive overload which makes a problem more difficult. To 

alleviate this memory overload, problem information is often stored externally by 

writing it down.  Thus, part of processing the information for a difficult problem occurs 

externally to the brain using tools such as paper and pencil, mathematics or a computer.  

As a problem solver becomes more proficient, knowledge and procedures become 

compiled into larger subprocesses, or chunked, taking less space in working memory. 

 

Based on this theory, cognitive overload could be an important cause of problem 

difficulty. In its simplest application, this means a problem containing more information 

is relatively more difficult than a problem with less information when other aspects of 

difficulty are controlled. This is especially true if the solver, like a novice learning a 

foreign language who must translate every word into their own language before 

understanding the meaning of a sentence [17], is not quickly able to chunk the problem 

situation into a larger representation.  Likewise, a problem with more complexity such as 

one with more unknowns, requiring several equations to represent it, would be more 

difficult because of cognitive overload. 
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When a student incorporates a representation that conflicts with reality into their 

problem-solving process, that representation usually conflicts with other representations 

the student is using, with the information in the problem, or both.   This conflict creates 

a larger working memory load because a new problem, the conflict, has been generated 

that must be solved in addition to the original problem.  If such representations that 

conflict with reality are strongly held, they are usually called misconceptions.   

 

According to Docktor and Mestre's extensive review of PER [12],  it has become widely 

accepted among those who follow or participate in science education research that 

students come to science courses with conceptions about the world that differ from 

reality and need to be addressed intentionally in instruction. Students’ misconceptions of 

basic physics concepts are a major factor in the difficulty of a physics problem. From 

this point of view, in addition to difficulties in understanding the physics ideas necessary 

to solve a problem, students’ misunderstanding the physics stresses their ability to 

process the information to reach a solution.  There are two major theoretical constructs 

of how these misconceptions arise, resource theory [22] and ontology theory [23] .  Both 

have an impact on cognitive load and are summarized in the next sections. 

 

2.4 Resource Theory 

Resource theory is also called “knowledge in pieces” theory [22, 24, 25]. According to 

resource theory, people’s knowledge consists of smaller grain-size pieces that are the 

resources they use to reason in problem solving. Those resources or knowledge pieces 



11 

are not necessarily compiled into larger concepts. Students activate one or several pieces 

of knowledge in response to a context and use them to reason on the fly. The 

misapplication of these pieces of knowledge, often through overgeneralization, is 

usually interpreted as a misconception.  For example, individuals of all ages will state 

that it is hot during summer because Earth and the Sun are in closer proximity than 

during winter. They generate this explanation on the spot by searching memory for 

examples of feeling hotter and coming up with the knowledge piece “closer means 

stronger”. In the resource theory view, they construct a solution of the problem from a 

general belief which is not proper in this context.   

 

Students have sets of knowledge pieces that are the resources they use to reason about 

physics. For example, a well-documented misconception of students is that they think 

the electrons comprising an electric current are used up when lighting a lightbulb.  The 

lack of the piece of knowledge or resource of current conservation causes the student to 

construct a representation of the lighting a lightbulb process from their other mental 

resources. The misconception could be explained by students activating the more 

general belief that every effect, such the light being on, must be caused by using up 

something, the electrons that flow in a complete circuit. The specific resource that the 

student might employ is their knowledge that batteries run down, a situation explained if 

the battery’s electrons are used up by the lightbulb.  Instead of using the resource of 

current conservation, the student uses short term and working memory to construct a 

new representation of the problem situation, using up electrons.  More cognitive load 

might occur because there is no process to determine how many electrons are used up 
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and one might be constructed.  This in turn produces a large cognitive load when the 

student tries to relate the current and voltage in Ohm’s law, a resource most students 

have at this stage.  The resulting short-term memory overload can cause the student to 

use mathematically and logically inconsistent results to reach a solution or abandon the 

goal of a solution all together. 

 

2.5 Ontology Theory 

Ontology theory proposes that people categorize the world they interact with into broad 

categories called “ontological categories”, literally categories of things and phenomena 

that exist in the real word [23]. According to Chi’s work [23], the two most used 

ontological categories in physics are substance and process. From this point of view, 

misconceptions are caused by putting knowledge and experiences into inappropriate 

ontological categories [26, 23, 27, 28]. The substance category is the one that relates 

most directly to a person’s life experience.  For this reason, people start by putting every 

concept in this category. Concepts that fit the substance metaphor are used more 

correctly than those that are not. For example, energy, because it is a conserved scalar 

quantity, can be fruitfully treated as substance. It is an abstraction that is taught using 

concrete metaphors like fluid flow and represented using a pie chart or bar chart that are 

also used for counting the amount of a substance. On the other hand, if the substance 

metaphor is used for force, which is not conserved and is a vector, the substance 

metaphor causes misconceptions. For example, students think of a force as given to an 

object (a substance property) and being used up as gasoline (a substance) is used up in a 
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car.  Thus, they describe throwing a ball as a person’s hand transferring a force to the 

ball and that force being depleted as the ball moves.   

 

In this theory, remediating misconceptions requires people to reorganize their ideas from 

one ontological category to another one.  This requires such a large cognitive load that it 

usually cannot be accomplished on the fly while solving a problem.  Thus, using this 

misconception in a force problem raises the difficulty of determining the rate that force 

is dissipated, a concept that does not exist in physics.  This in turn produces a large 

cognitive load as the student must assemble their mental resources to produce this non-

physical concept.  Again, the student has a short-term memory overload that results in 

their using mathematically and logically inconsistent results to reach a solution or 

abandoning the goal of a solution. 

 

 

2.6 Empirical Studies of Problem Difficulty  

There have been few previous studies to determine the difficulty of instructor 

constructed problems used in introductory physics.  These studies addressed two 

questions: (1) How do students and instructors perceive physics problem difficulty?  (2) 

What are the problem features that could be used to determine difficulty? 

 

In addressing the first question, researchers at Kansas State University found there was a 

correlation of 84% between instructors’ ratings of difficulty and a measure of problem 
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complexity which they defined as the number of equations needed to solve a problem, 

but no significant correlation between students’ ratings and problem complexity [29]. In 

this study, researchers asked undergraduate students and instructors to rate the difficulty 

of textbook-style kinematics and work energy problems on a 1 to 10 scale. For the 

Work-Energy topic, 15 undergraduate students in a calculus-based introductory physics 

course solved and rated the difficulty level of 16 problems.  Fourteen instructors were 

also asked to judge the difficulty level of those problems for a typical calculus-based 

introductory physics student. For the Kinematics topic, 21 undergraduate students in a 

calculus-based introductory physics course and 15 instructors rated the difficulty level 

for 10 problems. For both Kinematics and Energy, the instructors’ and students’ 

difficulty ratings correlated with the students’ grades for the problem solution. The 

instructor problem difficulty rating was more highly correlated with the average student 

grade on the problems than that of the students. 

 

In another study at the University of Illinois, instructors (4 advanced PER graduate 

students and 4 PER faculty members) and students (38 undergraduate students enrolled 

in an introductory calculus-based mechanics course) were asked to pick out the 

relatively more difficult problems from 79 multi-choice physics problem pairs [30]. All 

problem pairs were selected from previously administered exams and referred to the 

same situation. Instructor problem difficulty rankings had a correlation of 96% with the 

fraction of student correct answers which was better than correlation with the student 

problem difficulty ranking of 71%.  As in the Kansas State study, the instructors were 

more accurate than students in estimating the difficulty students had in getting the 
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correct answers. In this study, the instructors were asked to write down their reasons for 

each ranking of problem difficulty. The instructors all had similar criteria for judging 

problem difficulty.  Their common reasons were grouped by the researchers into 3 

categories: (1) Question context including question type, distractor, and wording; (2) 

Content type including more steps, math, direction, and content; and (3) Student 

characteristics including their familiarity, misconceptions, intuition, and carelessness.  

 

In a study at the University of Minnesota, PER researchers analyzed approximately 2000 

student solutions to open-response problems. They found 6 characteristics that they 

judged contributed to the problem difficulty.  These characteristics were: (1) Unfamiliar 

problem context; (2) Lack of explicit physics principle cues; (3) Extraneous or missing 

information; (4) Implicit rather than explicit problem target; (5) Number of necessary 

physics principles; and (6) Number of equations needed. The authors scored each of 

these six characteristics as 0 (easier) or 1 (more difficult). They found that the sum of the 

six characteristics accurately predicted the student performance solving the course 

problems [31].  Both the Illinois and Minnesota studies pointed to problem features such 

as problem context and number of steps as important features in determining problem 

difficulty. However, neither of these studies tried to quantify the degree of a problem’s 

difficulty using those features.  

 

A study from The Chinese University of Hong Kong developed a difficulty measure for 

a specific topic (logarithm problems) in algebra for 9th grade students [32] that is similar 

to the difficulty measure developed for this dissertation. They found 4 significant factors 
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for determining problem difficulty in this very limited problem regime for a very 

different set of students: (1) the perceived number of difficult steps (steps where students 

made non-trivial errors); (2) the number of steps required to finish the problem (the 

number of steps that an expert would use to solve a problem by the shortest path); (3) the 

number of operations in the problem expression (an operation was defined as addition, 

subtraction, multiplication, division, or exponentiation); and (4) students’ degree of 

familiarity with the type of algebra needed to reach the correct answer (problems learned 

at earlier stages of their education were assumed to be more familiar to students). Their 

measure using these 4 factors had a higher correlation (81%) with the students’ estimate 

of the problem difficulty than the teachers’ (74%) which is different than the results of 

the Kansas State and Illinois studies.  Moreover, the students’ estimate of problem 

difficulty correlated even more strongly (86%) with the percentage of students who 

answered the problem correctly.  

 

2.7 Summary  

In summary, information processing theory supplemented by the resources and 

ontological category theory of concept formation is a reasonable grounding for the 

development of a physics problem difficulty measure.  The methodology described in 

the next chapter, uses this theory to construct four major predictors of difficulty: 

problem context, physics principle, length of problem statement and mathematical 

complexity. These predictors also reflect the common difficulty factors identified by the 

empirical studies of problem difficulty described in this chapter.  
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Chapter 3 Construction of the Difficulty Measure 

In this chapter, I describe the design criteria and the development of the difficulty 

measure with four major categories: Problem Context, Physics Principles, Length of 

problem statement and Mathematical complexity. I will explain why these four factors 

are important, specify how to use a 1-5 scale to quantify the difficulty in each category, 

and give tables for determining the difficulty of problems for a calculus-based 

introductory physics courses for physical science and engineering majors.  This 

classification of problem difficulty arises from the theories described in Chapter 2 and 

has some overlap with the difficulty criteria previously proposed in the research 

summarized in that chapter. 

 

3.1 Design Criteria  

My goal was to develop an instrument that would be practical for both researchers and 

instructors to determine the difficulty of free response problems used in the authentic 

classroom practice in introductory physics. 

 

The design requirements for the difficulty measure were as follows: 

 (i) Ease of use. — A difficulty measure is easier to score and interpret if it minimizes 

the number of categories and the complexity of the scoring.  
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 (ii) Usability in authentic situations. — The difficulty measure focuses on problems 

written by typical physics faculty members and is applicable to problems spanning the 

range of problem topics in a typical introductory physics class. 

 (iii) Evidence for validity, reliability, and utility of the measure. — In particular, the 

open response problem difficulty measure should quantify the major differences 

between difficult and easy problems and agree with the performance of the students.  

 

I have tested the difficulty measure for its consistency across several raters and the 

various topics found in a calculus based introductory physics course.  Most importantly, 

I have taken as an operational definition of problem difficulty the average problem-

solving performance of students within a single classroom and pedagogical environment. 

Problem solving performance in this context means the student’s progress in writing a 

logical solution built on correct physical and mathematical principles [11], it does not 

necessarily require arriving at the correct answer. The results of these validity and 

reliability studies are described in Chapter 4. 

 

3.2 Design Process 

According to the theories outlined in Chapter 2, any factors that cause extra cognitive 

load will increase the difficulty level of a problem. Based on past research about 

information processing [17, 18, 19, 20], I identified the length of the problem statement 

and the number of equations used in the solution as two factors that naively would cause 
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a short term memory load and could be used to quantify problem’s difficulty. In 

addition, the connection of resource and ontological category theories with information 

processing, suggested that the student’s familiarity with the problem context and the 

physics principles needed for the solution were factors that could be used to quantify 

problem difficulty. Applying the criteria of having the fewest number of categories with 

the least difficult scoring method, I arrived at four categories for a difficulty measure 

that I could delineate and reliably implement. These four categories were Problem 

Context, Physics Principles, Length of Problem statement, and Mathematical 

Complexity of the solution. Although these categories were inspired by the theory in 

Chapter 2, I do not claim that they are only way to categorize the difficulty of 

introductory physics problems.  However, as seen in Chapter 4, these categories account 

for 80% of the variance in student problem solving performance for the sample of the 

more than 3500 student solutions examined.  A more detailed description of these 

categories and how they are scored is described in next section.  

 

The categories for determining problem difficulty were refined by examining final exam 

problems and their student solutions to decide what characteristics of each category were 

easiest to score.  These problems were not used in the validity study data of the next 

Chapter.  To make sure that the difficulty scale spanned the problem characteristics 

typically used in this course, I read through the past 20 years of quizzes and final exam 

problems from the calculus based introductory physics course at the University of 

Minnesota. I also compared them to the end of chapter problems found in several of the 

most common textbooks for this course and found them similar in structure and content.  
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Then I solved typical open response exam problems from 3 types of introductory courses 

(algebra-based, calculus-based for engineering and physical science students, and 

calculus based for biology and premedical students) from the last 5 years at the 

University of Minnesota.  Usually this consisted of 2 problems from each of 3 quizzes, 

and 5 from each final exam.  There were 330 problems in total with a significant amount 

of overlap.  In the interest of scoring simplicity, I have taken the most naïve and 

mechanistic view of determining the difficulty range of each category by reducing its 

evaluation to counting where possible.  However, evaluating the difficulty level of the 

physics principles needed to solve a problem was not a straightforward counting process.  

To arrive at a method to determine this difficulty range, I sorted the problems based on 

the most fundamental physics principles needed for each solution. I found that most of 

the problems from the entire first year course relied on one of two basic physics 

principles, energy or force and motion, for their solution. However, the mathematical 

concepts used to implement these principles increased in abstractness and subtilty, called 

mathematical sophistication, as the course progressed.  Based on that information, I 

developed the criteria for scoring each category described below. 

 

3.3 Categories and scoring 

As described above, I used four categories to determine problem difficulty that I could 

reliably distinguish while reading typical introductory physics test problems. For scoring 

ease, I chose a 1-5 scale for each category, with 1 being least difficulty and 5 being most 

difficult and averaged all categories to give a final difficulty score.  I do not assume that 
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the scale for any category is linear so that a difficulty level of 4 is not necessarily twice 

as difficult as a level of 2.  I did not assign a weight to each category to distinguish its 

difference in importance because I could not find any theoretical justification for doing 

so in the research literature. The results, given in chapter 4, show that there is a 90% 

correlation between the average of the four difficulty scores and students’ problem-

solving performance. However, after the data analysis described in Chapter 4, some 

categories proved to be significantly less important than others in predicting the overall 

problem difficulty and could be eliminated. Below I will explain why each category 

could be important and give the specific methods of scoring it on a 1-5 scale.   

 

3.3.1 Physics Principles 

Physics principles gives the minimal collection of fundamental physics needed to solve a 

problem. The difficulty that students have using these principles depends both on their 

tendency to trigger misconceptions and the sophistication of the mathematical ideas 

needed to use them.  In introductory physics, two principles underlie most topics.  

Almost all problems are solved using extensions of the Force principle or the Energy 

principle.  The extended Force principle includes interaction quantities such as force, 

torque, 3-dimensional momentum and angular momentum, and vector fields while the 

extended Energy principle includes conserved scalar quantities such as energy, charge, 

and one-dimensional momentum and angular momentum.  
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Based on the theories described in Chapter 2, the “force principle” is more difficult to 

use than the “energy principle” for several reasons.  First, according to the ontological 

category theory, energy can most often be used by considering it as a substance while 

force cannot.  As summarized in Chapter 2 this leads to the possibility of misconceptions 

increase cognitive load [33, 34]. According to the resource model, a substance-based 

ontology is most commonly used by students because of its concreteness and the large 

number of mental resources from daily life [26]. This means that a problem typically 

solved at the introductory level by an energy principle should be less difficult than one 

typically solved using a force principle.   In addition, misconceptions that students have 

about energy would be easier to change within the course because they usually involve 

modifications within the substance category.  Thus, they are less likely to survive to 

cause difficulty on an exam than force misconceptions which usually involve switching 

out of the substance category [26].  

 

However, there is a situation where the energy approach becomes more difficult.  When 

an object is bound to another such as in gravitational or Coulomb attraction, their energy 

is negative compared to its value when the objects are completely separated.  Using 

negative energy has been documented as an area of difficulty for students [35, 36]. The 

reason could be that a negative substance is not a common experience so no easily 

accessible mental resources exist, and the students cognitive load increases to produce 

those resources on the fly.  
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The use of a specific physics principle to solve a problem in introductory physics is 

often linked to a mathematical idea to express or implement it. For example, because 

force is a vector, the use of this principle usually necessitates understanding a more 

sophisticated mathematics than using the energy principle.  The use of vector 

mathematics increases the amount of conceptual processing required and thus increases 

cognitive load because these students have not automated the idea of vector addition.  

This additional difficulty factor also applies to vector conserved quantities such as 

momentum.  An additional mathematical sophistication is usually required in using the 

force principle to determine an object’s motion because force is related to motion 

through the object’s acceleration which is both a vector and a rate of change of a rate of 

change. This conceptual mathematical sophistication load is in addition to the additional 

algorithmic steps required to accomplish the vector calculation that I include in another 

category, mathematical complexity.  All those features make the use of the force 

principle in a problem more difficult than the use of the energy principle in most cases. 

 

In addition, there are physics principles that are most easily expressed using 

mathematical ideas.  In those cases, mathematics is not just a calculational tool, it is a 

conceptual device that allows chunking which reduces cognitive load.  For example, the 

use of Gauss’ Law to understand the relationship between charges and electric field is a 

direct connection of a mathematically sophisticated idea, surface integrals, to physics 

principles.  Because most students have only experienced the calculational aspect of this 

mathematics, they have not yet built the mental resources necessary to conceptually 

apply it to a physics problem without incurring a significant cognitive load.  Notice that 
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mathematical sophistication in this case does not necessarily include the need for 

additional mathematical steps or new mathematical techniques which are addressed in 

the mathematical complexity category.  

 

Based on the research, cited below, of the use of mathematics by physics students and 

the experience of instructors, the following is a list of mathematical ideas that increase 

the difficulty level of a problem.  I have listed this mathematics in order of increasing 

sophistication which I assumed correlates to their increased cognitive load for students.  

Note that mathematical sophistication is the conceptual representation of an idea and is 

independent of calculational technique. 

• Algebraic or proportional reasoning. Some students have difficulty translating a 

sentence into a mathematical expression, and in doing so they often place quantities on 

the wrong side of an equal sign [37, 38].  

• Vectors. Studies [39, 40] have documented student difficulties associated with using 

vectors, particularly for velocity, acceleration, forces, and electric fields. 

• Differential calculus. Studies have reported that students often don’t understand the 

idea of differentiation as it applies to real situations [41].  

• Integral calculus. Studies [40, 42, 43] show that even upper division students have 

difficulty dealing conceptually with the types of vector integration used for Gaussian 

surfaces or Amperian loops.  Even the most elementary uses of these abstract 

geometrical constructs add difficulty to a problem. 
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In summary, the difficulty of students using physics principles is three-fold.  First, they 

may require switching ontological categories or linking many fine-grained mental 

resources.  Second, they may trigger misconceptions that short circuit or confuse the 

cognitive process.  Third, some require more sophisticated mathematics to more easily 

represent their conceptual meaning than others which adds additional levels of difficulty.  

 

 

The Physics Principle Difficulty Scale  

Based on the discussion above, Tables 1 and 2 summarize the relative problem difficulty 

within the two primary physics principles (force and energy) in a calculus-based 

introductory physics course.  I took the principles that directly use the substance 

ontology, such as conservation of energy or one-dimensional conservation of 

momentum, to be level 1.  I then assumed an incremental model of difficulty, adding 1 

for every type of problem difficulty feature that occurs.  However, I set the highest 

difficulty level to 5 no matter how many difficult features are involved in a problem 

solution. A more detailed explanation of the difficulty levels is given below.   
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Conservation Principles / Energy:  

 

Physics Principles Difficulty level Reason 

Conservation of Energy for a 

closed system 

1 Direct use of substance ontology 

One dimensional 

conservation of momentum 

1 Direct use of substance ontology 

Conservation of momentum 

in 2 or 3 dimensions 

2 The use of vectors. 

Energy transfer, work, 

caused by a constant force 

2 Extra cognitive load of a continuous 

transfer process. 

Negative Potential Energy 

with a constant field 

2 Violates the naïve substance ontology  

Energy transfer, work, 

caused by a non-constant 

force 

3 The transfer process with the 

sophisticated mathematical process of 

integration over a path. 

Negative Potential Energy 

with a non-constant field 

3 Violates the naïve substance ontology 

and requires integration over a path. 

 

Table 1: Conservation Principle difficulty scale.  

 

Note that the cognitive load of using conservation of energy is increased by adding 

sophisticated mathematical ideas or violating the substance analogy.  For example, 

including work in conservation of energy remains within the substance ontology but 

adds the mathematical idea of accumulating the effect of a force over a path, 

conceptually an integration, that increases its difficulty score by 1 to a level of 2.  

Likewise, using conservation of energy with a negative potential energy violates the 

substance ontology resulting in an extra cognitive load that increases its difficulty to 

level 2.  When a non-constant force is used for work or non-constant field for potential 
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energy, the accumulation process represented by the integration of a variable adds an 

additional degree of difficulty level to level 3. 

 

Interaction Principles / Force: 

 

 

Physics Principles/Laws Difficulty level Reason 

Newton’s 2nd law in one 

dimension 

 

2 Force violates substance ontology 

Two-dimensional Force or 

Motion 

 

 

3 Adds the additional mathematical 

sophistication of vectors. 

Varying Force and Oscillations 

in one dimension 

3 Adds the mathematical 

sophistication of a varying force. 

Force with circular motion  

 

 

4 Adds the mathematical 

sophistication of varying 

acceleration.  

Gauss's Law for a static electric 

field 

 

Ampere’s Law with a static 

magnetic field 

5 Few if any mental resources exist 

for representing the required 

imaginary surface or path adding 

mathematical sophistication. 

Faraday’s Law linking a 

changing magnetic field to an 

electric potential 

5 Few if any mental resources exist 

for representing flux which is an 

unfamiliar application of the 

substance ontology. Mathematical 

sophistication includes the idea of a 

vector integral over an abstract 

surface.  

Also requires the mathematically 

sophisticated concept of rates. 

Table 2: Interaction Principle difficulty scale.  

 



28 

Note that when a force changes with time as, for example, in circular motion or 

oscillations, this adds another element of mathematical sophistication needed to describe 

a motion increasing the difficulty to level 4.  Physics principles that require the concept 

of integrating fields over imaginary surfaces, as in Gauss’s law, or imaginary paths, as in 

Ampere’s law, add yet another level of difficulty.  Equally sophisticated is the concept 

of a changing flux, as in Faraday’s law, which combines using both the idea of integrals 

and derivatives.  Even in its most simple calculational form, this requires mental 

resources that have not been chunked by most introductory students resulting in a 

cognitive load that that takes it to difficulty level 5. 

 

3.3.2 Mathematical complexity 

The mathematical complexity is distinct from mathematical sophistication in that it is 

only concerned with the length of the logical, usually mathematical, chain needed to 

reach an answer.  Because introductory students typically view mathematics solely as a 

method for calculating an answer, they often do not use a written mathematical process 

to help them determine a path to a solution.  For that reason, they must rely on their 

working and short-term memory to guide their mathematical calculations.  This means 

that a problem with more interrelated unknown quantities requires more information in 

short term memory and more processing in working memory. For example, a circuit 

with more branches and components has a higher difficulty level than a simpler circuit 

with fewer. To quantify the difficulty caused by mathematical complexity, I chose to 
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count the number of unknown quantities in the problem. Typically, the number of 

interrelated equations necessary to solve a problem is equal to the number of unknowns.  

 

 

The mathematical complexity difficulty scale 

Table 3 gives a difficulty scale for the mathematical complexity of a problem in a 

calculus-based introductory physics course where the students are majors in physical 

science or engineering. Of course, the level of difficulty for this category depends on the 

student population, especially their ability to organize long calculations on paper to 

reduce the load on their short term and working memory.  Based on an analysis of test 

problems over the last twenty years of this course, the number of unknowns in a problem 

typically ranges from 1 to 5. For simplicity, I use 1 extra unknown as the increment for 

the difficulty level.  

 

 

Difficulty 

level 

1 2 3 4 5 

Mathematical 

Complexity 

1 unknown 2 unknowns  3 unknowns 4 unknowns 5 or more 

unknowns 

Table 3: Mathematical Complexity difficulty scale.  
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3.3.3 Problem Context 

Problem context is composed of a storyline or situation and the objects in that situation.  

According to resource theory, students possess a variety of mental resources that are 

activated differentially in specific situations. The more familiar the situation, the more 

likely it is that students have a collection of appropriately chunked mental resources to 

build a representation or series of representations that facilitate a solution. If the 

situation is unfamiliar, the student must assemble many discrete mental resources which 

adds to the cognitive load.  For example, the principle of conservation of energy can be 

easier to use in the context of a skateboard going up a ramp than for the excitation of an 

atom because most students are more familiar with the behavior of skateboards than 

atoms. For any particular student population, the rater needs to know their experiences to 

judge the degree to which a situation is familiar, or the objects involved are concrete.  

 

The concreteness of the objects in a situation is another factor in determining the 

problem difficulty in the context category.  For example, the situation of “a collision 

between two blocks” refers to abstract objects, blocks, that are not usually linked to 

collisions in the minds of typical college students.  This means that using a collision 

with blocks to solve a problem requires more mental resources than the more familiar 

situation of a car collision. For example, in contemplating block collisions students tend 

to equate the initial and final kinetic energy of the system because abstract colliding 

blocks do not easily link to the resource of change. On the other hand, the problem 

situation “two cars collide” is likely to trigger the change resource that allows the final 

kinetic energy to be less than the initial kinetic energy.  This is because most students 
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have a visual car collision experience where the cars are different before and after the 

collision.  This makes the difficulty level of a context using abstract objects higher than 

using concrete and familiar objects.   

 

The Context Difficulty Scale 

Based on a context analysis using information processing theory that incorporates 

resource theory, Table 4 gives a difficulty scale for students majoring in physical science 

or engineering in a calculus-based introductory physics course. The least difficult 

context is one for which the situation is familiar, and the objects are both familiar and 

concrete while the most difficult is an unfamiliar situation with abstract objects.  An 

explanation of Table 4 is given below. 
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Difficulty 

level 

Problem context Examples 

1 Concrete and familiar objects in a 

familiar situation. 

A car goes down a slope.  

Circuits with resistors, batteries and 

switch.  

2 Concrete and familiar objects in an 

unfamiliar situation. 

Concrete but less familiar objects in a 

familiar situation. 

A car going around a banked curve. 

 

A circuit with capacitors or inductors. 

3 Concrete but unfamiliar objects in an 

unfamiliar situation. 

Two identical stars orbit around each 

other.   

 

4 Abstract objects in a familiar situation. An infinite long straight current 

carrying wire placed near a small wire 

loop. 

5 Abstract objects in an unfamiliar 

situation. 

A uniform time dependent magnetic 

field along the axis of a solenoid. 

Table 4: Problem Context Difficulty Scale.  

 

For example, all students in the classes tested have experience with cars, either while 

riding in them, observing them, or seeing them in movies.  To them cars are very 

familiar and concrete objects.  Likewise, most students majoring in engineering or 

physical sciences are familiar with the basic electrical circuit consisting of batteries, 

switches, and lightbulbs or resistors either from personal experience or previous class 

work.  Note that being familiar with a situation and the objects in that situation does not 

mean that the students have the correct idea about their behavior.  Difficulties with 

problem solving caused by the common misconceptions that often arise in such contexts 

are accounted for in the category of physics principles. 
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By way of contrast, the problem context of a car going around a banked curve, has 

concrete and familiar objects, a car and a road, in an unfamiliar situation. Although 

students have experienced going around curves, they have generally not attended to the 

banked curve part of the experience.  This example of familiar and concrete objects in an 

unfamiliar situation has the same difficulty, level 2, as does a familiar situation, such as 

an electric circuit, with a concrete but an unfamiliar object such as a capacitor.  It is also 

possible to have concrete but unfamiliar objects interacting in an unfamiliar situation 

such as binary star orbits.  Stars are concrete objects to these students, but they have no 

experience, either from real life or schooling, about how they interact.  This makes them 

concrete but unfamiliar objects.  A binary star system, where both objects have similar 

mass, is also an unfamiliar situation compared a planet orbiting a much heavier star, 

raising the difficulty level to 3.   

 

When the problem context deals with abstract objects such as an infinite long straight 

wire or a uniform magnetic or electric field, the difficulty level increases to a level 4 

even if the situation is familiar.  Finally, there are problems that have abstract objects in 

an unfamiliar situation such as a uniform time dependent magnetic field in a solenoid.  

This has the highest level of difficulty, level 5. 

 

3.3.4 Length of the problem statement 

The number of words in a problem statement could also be important in determining its 

difficulty. In a physics problem, introductory students often attend to every word of a 
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problem statement because they have not built the mental resources to quickly identify 

meaningful information [19].  As reviewed in Chapter 2, short-term memory can only 

hold a small amount of information for a limited time [20].  A student in introductory 

physics reading a physics problem is much like a person learning a foreign language 

who reads by translating every word into their native language and then processing those 

words.   If students read and process every word in a physics problem individually 

without automatically assembling them into larger concepts, a longer problem statement 

puts more information in short term memory and increases the load on working memory. 

For this measure, I chose word count as a proxy of the amount of problem information.  

Word count averages over the other semantic features such as word familiarity, word 

length, and syntax.  

 

 

The Problem Statement Length Scale 

Table 5 gives a problem difficulty score based on the length of the problem statement. 

After reviewing test problems for the past twenty years for the calculus-based 

introductory physics course for physical science and engineering majors at the 

University of Minnesota, I found that the length of the problem statement typically falls 

in the range of 25 to 250 words. I use 50 words as a convenient increment for a difficulty 

level change. 
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Difficulty 

level 

1 2 3 4 5 

Length of 

problem 

statement 

50 words 

(25-74) 

 100 words 

(75-124) 

150 words 

(125-174) 

 

200 words 

(175-224) 

 

>250 words 

(225-) 

 

Table 5: Length of Problem Statement difficulty scale.  

 

In summary, Tables 1 to 5 each give the scale by which the four different aspects of 

problem difficulty for students was measured. In the next section, I will give examples 

of applying the difficulty measure to real introductory physics exam problems. 

 

3.3.5 Examples of applying the difficulty measure 

Below I described how I arrived at the difficulty score for a subset of the final exam 

problems that I used in this study.  Although I have kept these problems very close to 

their original format, I have made some changes to facilitate easier reading here.  I have 

also outlined a solution for each problem. 

 

Problems 1 and 2 below are from the first semester of an introductory physics course 

(mechanics) final exam. Problem 1 is relatively easy while problem 2 is more difficult.  

Problems 3 and 4 are from the second semester of an introductory physics course 

(electricity & magnetism) final exam. Problem 3 is relatively easy while problem 4 is 

more difficult. 
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Problem 1:  

 

You are helping your friend prepare for a skateboard exhibition by determining if the planned 

program will work. Your friend will take a running start and jump onto a heavy-duty 7.0 kg 

stationary skateboard. The skateboard will glide in a straight line along a short, level section of 

track, then up a sloped wall. The goal is to reach a height of at least 8.0 m above the ground 

before coming back down the wall. Your friend’s maximum running speed is 7.0 m/s, and your 

friend has a mass of 68 kg. The wall has a slope of 53.1° with the ground. Can your friend 

perform this trick? Note you must show your work to get credit. 

 

Solution outline: 

Conservation of momentum comparing the skateboard + person momentum before and after the 

person jumps on the skateboard. 

𝑚𝑣1 = (𝑚 + 𝑀)𝑣2 

Conservation of energy comparing the skateboard + person energy from just after the person 

jumps on the skateboard to when it reaches its highest point on the wall.   

1

2
(𝑚 + 𝑀)𝑣2

2 = (𝑚 + 𝑀)𝑔ℎ 

 

Difficulty calculation 

Length of Problem Statement: 2 (117 words) 

Problem Context: 1 (Familiar situation and familiar and concrete objects for these 

students) 

Physics Principles: 1 (Conservation of energy, one-dimension conservation of 

momentum) 

Mathematical Complexity: 2 (Two equations to solve for 2 unknowns) 

Average: 1.5 

 

Difficulty explanation 

Riding a skateboard up a sloped ramp is a familiar situation with concrete and familiar 

objects for most students, since most of them have participated in or seen this situation. 
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This problem requires the use of both conservation of energy and conservation of 

momentum in one dimension. The substance ontology applies to both principles, and 

there is no extra mathematical sophistication.  So, the difficulty of the physics principles 

is level 1 for each.  The two principles do not add. The difficulty of having two 

principles rather than 1 is taken into account in the increased mathematical complexity. 

 

 

Problem 2: 

 

(a) Two identical stars of mass M are in circular orbits around their CM. Show that 

𝑇2 = 2𝜋2𝑅3/𝐺𝑀 

where R is the distance between the stars and T is the period of rotation. 

(b)  Now consider a star and a satellite with unequal masses m and M and show, in the 

case of circular orbits, that  

𝑇2 = 4𝜋2𝑅3/𝐺(𝑀 + 𝑚) 

(c)  Starting from the circular orbit you found in part (b), in the case where m << M and the 

distance between star and satellite is R, find the escape speed for the satellite. 

 

Solution outline: 

Part (a):  

Apply Newton’s second law using the gravitational force law and the acceleration for uniform 

circular motion.  Each star goes around the center of mass of the system which is equidistant 

from the two stars. 

𝐺𝑀𝑀

𝑅2
=

𝑀𝑣2

𝑅
2

 

Use the definition of speed in the case of a constant speed as the star goes around a complete 

orbit. 

𝑇 =
𝜋𝑅

𝑣
 

 

Part (b): 

Determine the position of the center of mass of the star satellite system.  Use the definition of 

center of mass. 
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𝑚𝑟1 = 𝑀𝑟2 

𝑟1 + 𝑟2 = 𝑅 

Apply Newton’s second law and the definition of constant speed as in part (a) 

𝐺𝑀𝑚

𝑅2
=

𝑚𝑣1
2

𝑟1
 

𝑇 =
2𝜋𝑟1

𝑣1
 

 

Part (c): 

When m << M, 𝑟1 = 𝑅 

Apply conservation of energy to the star + satellite system taking the initial position of the 

satellite as its orbit around the star and the final position as infinitely far away from the star.  Use 

conservation of energy and assume that the kinetic energy of the satellite at infinity is 0.   

1

2
𝑚𝑣𝑒𝑠𝑐𝑎𝑝𝑒

2 −
𝐺𝑀𝑚

𝑅
= 0 

 

Difficulty calculation: 

Length of Problem Statement: 2 (103 words) 

Problem Context: 3 (Unfamiliar situation, concrete but unfamiliar objects) 

Physics Principles: 4 (Force with circular motion, Negative energy) 

Mathematics Complexity: 4 (4 equations for part b) 

Average: 3.25 

 

Difficulty explanation: 

The stars are concrete objects for students although not as familiar as the skateboard 

mentioned in previous problem. The gravitational force between stars cannot be 

considered constant as is the gravitational force on earth.  That makes using the 

gravitational force in this situation unfamiliar for these students giving the context a 

rating of 3. The physics principles for parts (a) and (b) requires force and circular 

motion, rated as 4 on Table 2.  The negative energy with a non-constant field required in 

part (d) was rated as 3 according to Table 1. Assuming that a student treats each part 

independently, the final rating for physics principles is 4, the highest of the parts. 
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Problem 3: 

In the circuit shown below, after the switch “S” is closed, the current through the 8.0 V 

battery increases by 0.20 A as compared to its value when the switch had been open.  

(a) What is the unknown resistance R?  

After the switch is closed. 

(b)  How much power is dissipated in the resistor with resistance R? 

(c)  What is the total net power supplied to the circuit by the batteries (note batteries that 

produce power supply positive power, and batteries that consume power supply negative 

power)? 

 

 
 
Solution outline: 
 

Part (a): 

Before the switch is closed: 

Apply conservation of energy around the complete circuit. 

8𝑉 − 4𝑉 = (4Ω + 4Ω)𝐼𝑏𝑒𝑓𝑜𝑟𝑒 

 

After the switch is closed: 

The current through the 8V battery is now 

𝐼1 = 𝐼𝑏𝑒𝑓𝑜𝑟𝑒 + 0.2𝐴 

 

Apply conservation of current 

𝐼1 = 𝐼2 + 𝐼3 

 

Apply conservation of energy around each of the two circuit loops. 

8𝑉 − 4𝑉 − (4𝛺)𝐼2 − (4𝛺)𝐼2 = 0 

4𝑉 − 𝑅𝐼3 − 2𝑉 − (4𝛺)𝐼2 = 0 
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Part (b): 
 

Use the definition of power for an ohmic object. 

𝑃𝑖𝑛 𝑅 = 𝐼3
2𝑅 

 

Part (c): 

Use the definition of power: 

𝑃 = (8𝑉)𝐼1 − (4𝑉)𝐼2 − (2𝑉)𝐼3 = 3.6𝑊 

 

Difficulty calculation: 

Length of Problem Statement: 2 (89 words) 

Problem Context: 1 (circuits with battery and resistors, familiar situation, concrete and 

familiar objects) 

Physics Principles: 1 (conservation of energy in a closed system, conservation of charge 

in a closed system) 

Mathematics Complexity: 5 (5 equations needed in part (a))  

Average: 2.25 

 

Difficulty explanation: 

This problem involves direct current circuits with batteries and resistors, the most 

familiar situation with the most concrete and familiar objects in E&M. There are no 

unfamiliar objects such as inductors or capacitors and no abstract entities such as electric 

or magnetic fields or infinitely long wires. The physics principles are conservation of 

energy and charge in a closed system both of which make direct use of the substance 

ontology.  No sophisticated mathematical ideas are needed.  

 

Problem 4: 

A parallel-plate capacitor has circular plates of radius R=0.30 m. Its plates are separated by 

a distance d = 0.10 mm. The capacitor is being charged with a constant current I =7.0 A. 
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a)  What is the magnitude of the magnetic field between the plates at a distance r = 0.20 m 

from the central axis of the capacitor? 

  

b)  If you are looking down the axis of the capacitor with the positive plate closer to you 

and the negative plate further from you, in which direction will the B-field loop around 

(clockwise or counterclockwise)? 

 

 
 
 
Solution outline: 
Part (a): 
 
Use Ampere’s law for a displacement current 

2𝜋𝑟𝐵 = 𝜇0𝜀0𝜋𝑟2
𝑑𝐸

𝑑𝑡
 

Use the relationship of voltage to electric field in a capacitor: 

Ed=V 

Use the definition of capacitance 

C=Q/V 

Use the definition of current  

𝐼 =
𝑑𝑄

𝑑𝑡
 

Use the relationship of capacitance to the geometry of the capacitor 

C=𝜀𝑜𝜋𝑅2/d 

 
get 

𝐵 =
𝜇𝑜𝐼𝑟

2𝜋𝑅2
 

 

Alternative Solution outline: 

Part (a): 

 

Use Ampere’s law for a displacement current 
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2𝜋𝑟𝐵 = 𝜇𝑜𝜀𝑜𝜋𝑟2
𝑑𝐸

𝑑𝑡
 

Use Gauss’ law for electric field 

𝐸 =
𝑞

𝜀𝑜𝜋𝑟2
 

Use the definition of current 

𝐼 =
𝑑𝑞

𝑑𝑡
 

get 

 

𝐵 =
𝜇𝑜𝐼𝑟

2𝜋𝑅2
 

 

A third solution is less straight-forward but is much shorter.  It relies on assuming that 

there is an effective current between the parallel plates of the capacitor.  This solution 

relies on a logical argument about why one can treat the current this way even though 

no such physical current exists.  This solution is not expected for introductory 

students but is given for completeness. 

 
 
Another alternative solution outline: 
 
Part (a): 
 
Use Ampere’s law for a real current that is assumed to be the same as the displacement 
current 

2𝜋𝑟𝐵 = 𝜇𝑜𝐼𝜋𝑟2/𝜋𝑅2 

get 

 

𝐵 =
𝜇𝑜𝐼𝑟

2𝜋𝑅2
 

 
Part (b): 
 
Use the Ampere’s law right hand rule and conventional current that goes from + to - B is 
clockwise 
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Difficulty calculation: 

Length of Problem Statement: 2 (98 words) 

Problem Context: 5 (An unfamiliar situation of a circuit with no source and a non-

physical current in a circuit gap between two capacitor plates, a capacitor is an 

unfamiliar object, and abstract entities of electric and magnetic fields.) 

Physics Principles: 5 (Time varying electric field causes a magnetic field) 

Mathematics Complexity: 5 (5 equations for solution 1) or 4 (4 equations for 

solution 2) 

Average: 4.25 (solution 1) or 4.0 (solution 2) 

 

Difficulty explanation: 

For this problem, the context is the unfamiliar situation of a circuit with no source and a 

displacement current in the gap of a capacitor. There is also an unfamiliar object, the 

capacitor, and abstract electric and magnetic fields.  The physics principles require the 

mathematical concept of an integral over a Gaussian surface, an integral along an 

Amperian path, and a time varying quantity, the electric field.  Each of the three 

solutions requires a different number of equations for the solutions. Because solution 2 

doesn’t use the distance between the two plates, and solution 3 requires an unusual 

interpretation of current, I chose solution 1 as the most likely path to a solution that 

would be attempted by a student. 

3.4 Summary 

In this chapter I have given a short description of the process by which I arrived at the 

categories for the difficulty measurement.  These categories were based on the 

application of the theories summarized in Chapter 2 and an attempt to make reproducible 

categories for the problems used on physics tests at the University of Minnesota.  None 
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of those problems were used in the validity analysis in the next chapter.  The final 

categories have an overlap with those reported in previous studies but are not the same.  

I then gave the criteria for scoring the problem difficulty in each category and gave 

examples to illustrate how I applied those criteria to five of the problems used in the 

validity analysis.  
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Chapter 4 Validity and Reliability  

After developing the four-category difficulty measure for physics problems, I gathered 

evidence to determine its validity and reliability. Validity is the extent to which the 

scores from a measure represent the intended quantity. Here I consider three basic types 

of validity: construct validity, criterion validity and internal structure of the measure 

[44]. The reliability is the extent to which the scoring is independent of the person doing 

it. 

4.1 Construct Validity 

Construct validity is the extent to which a measure has a theoretical backing [45]. This 

validity is based on the construction of the four categories of difficulty described in 

Chapter 3 that reflect the theories described in Chapter 2.  

 

4.2 Criterion Validity 

Criterion validity is the extent to which the scores on a measure are correlated with other 

variables (known as criteria) that one would expect to be related [44]. The criterion 

validity evidence for the difficulty measuring instrument is the extent to which its score 

agrees with student's performance when solving the physics problems typically used for 

grading purposes. Here one assumes that the more difficult the problem, the lower the 

student performance will be on that problem.  As shown in Appendix A, the 

distributions of student numerical grades for the problems used in this study are not 
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simple which makes it difficult to characterize them with a single number.  Nevertheless, 

how well the student population does on a problem can be thought of as the total number 

of grading points that all of the students receive for their individual problem solutions.  

Since the average grade gives the same information as the sum of all the grading points 

students received on that problem, I will take the average numerical grade as the 

measure of student performance on that problem.  Using the average to characterize 

student performance is also used in all previous studies reviewed in chapter 2. 

 

4.2.1 Experimental Environment  

I compared the difficulty scores of final exam problems from four semesters of classes 

of calculus based introductory physics for engineering and physical science students at 

the University of Minnesota to the grades for the student solutions of those same 

problems assigned by the graduate teaching assistants (TAs) in those courses. The 

problem grades are a good indicator of student performance according to previous work 

that compared TA grading of problems to an evaluation how well the student 

performance approached expert behavior [11].  Two of the problem samples, fall 2016 

and fall 2014, were from multiple lecture sections teaching the first semester of the 

introductory physics course and addressed Classical Mechanics.  The other two problem 

samples, spring 2016 and spring 2012, were from multiple lecture sections teaching the 

second semester of the course and addressed Electricity and Magnetism.  These problem 

samples were chosen because the classes were not sequential and therefore had fewer 

continuing instructors, and thus more likely to have a larger diversity of problem styles. 
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These semesters also had a full set of data, individual grades for each problem on the 

final examination, available.  In all cases, the final exam had 5 open response problems 

that were the same for every lecture section in that semester. 

 

In fall 2016, the first semester of introductory physics (Mechanics) had 3 lecture 

sections with 900 students in total. In fall 2014, the first semester of the course had 5 

lecture sections with a total of 858 students. Each lecture section within a semester had 

approximately the same number of students. In each semester, all the sections used the 

same problems and took the exam at the same time.  The difficulty measure was applied 

to all 5 open response final exam problems from each of the two semesters. The 

problems for each semester were different. These problems are given in Appendix B. 

They addressed topics that included kinematics, Newton’s laws, conservation of energy, 

and conservation of momentum. Each of the 10 problems was graded independently for 

each lecture section by a different TA from that section on a scale from 0 to 25.   

 

Exactly the same process was followed for the second semester of the introductory 

physics course (Electricity and Magnetism).   In spring 2016, the course had 4 lecture 

sections with 963 students in total. In spring 2012, the second semester had 5 lecture 

sections with 831 students. These problems, given in Appendix B, addressed topics 

including electric circuits, Coulomb's law, Ampere’s law, and Faraday’s Law.  
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4.2.2 Results for Criterion Validity 

An overall score for each problem’s difficulty was calculated by assigning a score 

between 1 and 5 for each of the four categories of the difficulty measure and then 

averaging the scores from all the categories. Averaging the scores from 4 categories 

gives the same weight to each category in determining the problem difficulty.  This 

assumes that each category has an equivalent effect on cognitive processing in the 

absence of information to the contrary. The single overall score was compared with the 

students’ average grade for that problem. 

 

As shown in Figure 1, the overall problem difficulty scores and the average student 

grade for the 20 final examination problems from two offerings of each semester of the 

introductory physics course are highly correlated. In this figure, each point represents a 

problem and its error bars is dominated by the systematic uncertainty of the average 

problem grade determined in the manner described later in this section.  The gray area 

shows the 95% confidence level for a linear fit to the data which is the dashed line.  The 

Pearson correlation is 90%. 
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Figure 1: The relationship between the average student grade and the problem's difficulty score 

for 20 problems from 4 semesters.  The dashed line is a linear fit to the data. 

 

This extremely high correlation between difficulty scores and the average performance 

of students on each problem provides evidence of the validity of the difficulty measure. 

Details of the measurement for each semester are given below where the mechanics 

semesters of introductory physics are examined separately from the electromagnetism 

semesters.  It is these separate measurements that are combined to give the results of the 

17 large lecture sections displayed in Figure 1. 
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4.2.3 Studies with Introductory Mechanics 

Fall 2016 

The following tables and graphs show the relationship of the problem difficulty score 

and the student performance on each problem as determined by their numerical grade.  

Tables 6 – 8 give the measurements displayed on the graphs in Figures 2 and 3.  

 

Table 6 gives the difficulty scores for each of the 5 mechanics problems on the final 

examination in Fall 2016 in each of the 4 categories of the measurement. These 

difficulty scores were determined by the method given in Chapter 3.  The table also 

gives an overall difficulty score found by averaging the scores of the 4 categories. 

 

 

 

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 

Length of Problem Statement 2 2 1 2 2 

Problem Context 1 1 1 3 1 

Physics Principle 1 3 3 4 3 

Mathematical Complexity 2 2 2 4 2 

Average Difficulty Level 1.5 2.25 1.75 3.25 2.0 

 

Table 6: The problem difficulty measure on the fall 2016 final examination.   

 

Table 7 gives the average grade for each problem out of 25 possible points for each 

lecture section. The uncertainties given are statistical, the standard error of the mean 
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(SEM).  Note that these statistical uncertainties are similar for all the sections and all the 

problems.   

 

Difficulty score Average grade 

section 1 

(297 students) 

Average grade 

section 2 

(304 students) 

Average grade 

section 3 

(299 students) 

1.5 (Problem 1) 20.3±0.4 21.1±0.3 22.6±0.3 

2.25 (Problem 2) 12.4±0.3 18.1±0.4 15.3±0.5 

1.75 (Problem 3) 16.6±0.4 17.7±0.4 20.3±0.3 

3.25 (Problem 4) 8.2±0.4 7.1±0.4 12.2±0.4 

2.00 (Problem 5) 17.6±0.4 16.4±0.4 17.5±0.3 

Table 7: The average student grade for each of the final examination problems in fall 2016 by 

course section.  The uncertainties shown are statistical only. 

 

Table 8 shows the combined student grade for all of the 3 sections for each of the final 

examination problems. Each average over the grading of 3 different TAs.   If there were 

a similar grading standard among the graders, the averaging process should enhance the 

signal and reduce the noise caused by individual grading differences.  Deviations of the 

graded student performance outside of that predicted by statistics among the sections 

could come from differences in grading policies, teaching, or student populations. This 

systematic uncertainty was estimated by determining the difference between the average 

grade of each section and average grade of all students divided by the square root of 

number of sections minus 1.  The systematic uncertainty, given in Table 8 and illustrated 
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by the spread in Figure 2, is much larger than the statistical uncertainty and dominates 

the measurement when they are added in quadrature. 

 

Difficulty score Average grade  

all 3 sections 

(900 students) 

Systematic 

uncertainty 

1.5  (Problem 1) 21.3±0.2 0.7 

2.25 (Problem 2) 15.2±0.3 1.6  

1.75 (Problem 3) 18.2±0.2 1.1  

3.25 (Problem 4) 9.2±0.3 1.5  

2.00 (Problem 5) 17.1±0.2 0.4  

Table 8: The average student grade for all students from 3 sections for each of the final 

examination problems in fall 2016.  The uncertainties shown with the average grade are 

statistical only. 

 

Figure 2 illustrates the extent of the systematic error for all sections on a single graph.  

The color of each data point indicates the section and the error bars are statistical.  The 

spread of grades for the same problem outside of that predicted by statistics is evident.  

This spread is caused by systematic uncertainties due to each section having different 

problem graders, different instructors, and, possibly, different student populations.   

 

As discussed previously, averaging each problem’s grade over the three sections should 

reduce the effect of the differences of TA grading.  These results are shown in Figure 3 

along with the linear fit to the points and a shaded region representing the 95% 
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confidence level for the fit.  The result of the linear regression is a Pearson correlation of 

99% with the null hypothesis probability of 0.001.  The error bar shown for each point 

on this graph is the square root of the sum of the statistical uncertainty in quadrature 

with the systematic uncertainty. 

 

 

Figure 2: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections in Fall 2016.  The colors designate the different lecture 

sections.  The error bars represent the statistical uncertainty. 
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Figure 3: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections combined in Fall 2016. The error bars are dominated by 

the systematic uncertainty of the student grade illustrated by Figure 2 and calculated in Table 8.   

 

The study was repeated for the problems given on the final examination of the first 

semester of the introductory physics course in Fall 2014.  In this sample there are 5 

different lecture sections and thus 5 different professors each with a different set of TAs. 

The result was similar and is given below.  

Fall 2014  

Below are the data for the 5 different open response problems used by all the lecture 

sections in Fall, 2014.   

 

Tables 9 – 11 and Figures 4 and 5 give the same information as the corresponding 

Tables 6 - 8 and Figures 2 and 3 for the Fall 2016 sections.  
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  Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 

Length of Problem 

Statement 

3 2 3 2 3 

Problem Context 1 2 1 2 1 

Physics Principle 2 3 4 4 3 

Mathematical Complexity 2 2 3 2 4 

Average Difficulty Level 2 2.25 2.75 2.5 2.75 

Table 9: The difficulty scores of problems on the final examination in fall 2014.   
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Table 10: The average student grade for each of the final examination problems in fall 2014 by 

course lecture section.  The uncertainties shown are statistical only. 

 

 

 

 

 

 

 

 

 

 

Difficulty 

score 

Average grade 

section 1 

(177 students) 

Average grade 

section 2 

(198 students) 

Average grade 

section 3 

(207 students) 

Average grade 

section 4  

(171 students) 

Average grade 

section 5 

(111 students) 

2        

(Problem 1) 

22.1±0.2 21.0±0.3 19.1±0.4 20.4±0.4 20.5±0.5 

2.25   

(Problem 2) 

19.9±0.4 17.3±0.4 15.4±0.3 18.3±0.5 19.0±0.5 

2.75   

(Problem 3) 

12.7±0.5 12.0±0.5 14.3±0.4 16.0±0.5 6.5±0.8 

2.5     

(Problem 4) 

15.7±0.5 12.6±0.6 14.0±0.6 12.3±0.6 16.0±0.9 

2.75    

(Problem 5) 

12.2±0.6 16.2±0.5 12.9±0.6 15.8±0.6 10.2±0.9 
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Difficulty score Average grade 

all 5 sections 

(864 students) 

Systematic 

uncertainty 

2         (Problem 1) 20.6±0.2 0.5 

2.25    (Problem 2) 17.7±0.2 0.8  

2.75    (Problem 3) 12.7±0.2 1.6  

2.5      (Problem 4) 13.9±0.3 0.8  

2.75    (Problem 5) 13.7±0.3 1.1  

Table 11: The average student grade for all students from 5 sections for each of the final 

examination problems in fall 2014. The uncertainties shown in the column with the average 

grades are statistical only. 

 
Figure 4: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections in Fall 2014. Note that there are two problems with the 

highest difficulty level.  The colors designate the lecture sections.  The error bars represent the 

statistical uncertainty. 
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As before, the effect of systematic differences in grading, given in Table 11 and shown 

by the spread in Figure 4, is reduced by averaging the scores of the five sections.  The 

result of this averaging is shown in Figure 5 along with the linear fit to the points and the 

shaded region representing the 95% confidence level for the fit. The result of the linear 

regression is a Pearson correlation of 97% with the null hypothesis probability of 0.007.  

The error bars shown are a combination of the statistical and systematic uncertainty 

which is dominated by the systematic uncertainty.  These combined results for Fall 2014 

show the same behavior as those for Fall 2016.

 

Figure 5: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections combined in Fall 2014.  The error bars are dominated by 

the systematic uncertainty of the student grade illustrated by Figure 4 and calculated in Table 11.   

 

Having determined that the difficulty measurement for 10 different introductory physics 

mechanics problems constructed by 8 different professors is highly correlated with 

student performance on those problems, the same test was applied to two different 
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electromagnetism semesters.  All test and analysis procedures were the same as 

described previously. 

4.2.4 Studies with introductory Electricity and Magnetism  

The analysis of the correlation between the student performance on final exam problems 

and their difficulty level for two instances of the semester of introductory physics 

teaching electricity and magnetism, is given below.  The difficulty level was determined 

by the method given in Chapter 3.  These difficulty scores tend to be higher than the 

mechanics problems as seen by a comparison of Table 12 with Table 9.  This is not 

surprising because the electromagnetism semester is considered more difficult than 

mechanics by both students and instructors. 

 

Spring 2016 

 

Below is the analysis of the 5 open response problems from the 2016 Spring Final 

Exam.  Tables 12 – 14 give the data displayed on the graphs in Figures 6 and 7.   

 

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 

Length of Problem Statement 3 2 4 5 2 

Problem Context 3 1 4 3 5 

Physics Principle 3 1 4 3 5 

Mathematical Complexity  3 5 4 1 5 

Average Difficulty Level 3 2.25 4 3 4.25 

Table 12: The difficulty measure scores for each of the 5 problems on the final examination in 

spring 2016.   
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Difficulty score Average grade 

section 1 

(277 students) 

Average grade 

section 2 

(259 students) 

Average grade 

section 3 

(243 students) 

Average grade 

section 4  

(184 students) 

3     (Problem 1) 21.2±0.2 11.4±0.4 13.9±0.3 15±0.5 

2.25 (Problem 2) 15.6±0.4 15.8±0.4 19.4±0.3 13.7±0.6 

4     (Problem 3) 10.6±0.4 11.8±0.4 13±0.4 11.8±0.5 

3     (Problem 4) 16.7±0.4 13.7±0.4 14.4±0.4 13.8±0.5 

4.25 (Problem 5) 9.6±0.4 10±0.6 9.7±0.4 11.2±0.5 

Table 13 :The average student grade for each of the final examination problems by course 

lecture section in Spring 2016.  The uncertainties shown are statistical only. 

 

Difficulty score Average grade of 

all 4 sections 

(963 students) 

Systematic 

uncertainties 

3      (Problem 1) 15.5±0.2 2.1 

2.25 (Problem 2) 16.2±0.2 1.2  

4      (Problem 3) 11.8±0.2 0.5  

3     (Problem 4) 14.7±0.2 0.7 

4.25 (Problem 5) 10±0.2 0.4  

Table 14: The average student grade for each of the final examination problems for all students 

from the 4 sections in spring 2016. The uncertainties shown in the column with the average 

grades are statistical only. 

 



61 

 

Figure 6: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections in Spring 2016.  The colors designate the different lecture 

sections.  The error bars represent the statistical uncertainty. 

 

Averaging over the five different sections reduces the effect of the grading systematics.  

The result of this process is shown in Figure 7 along with the linear fit to the points and 

the shaded region representing the 95% confidence level for the fit.  A linear regression 

gives a Pearson correlation of 96% with the null hypothesis probability of 0.008.  As 

before, the error bars shown are a combination of the statistical and systematic 

uncertainty which is dominated by the systematic uncertainty.  This behavior is similar 

to that of the mechanics semesters but covers a wider range of problem difficulty. 
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Figure 7: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections combined in Spring 2016. The error bars are dominated by 

the systematic uncertainty of the student grade illustrated by Figure 6 and calculated in Table 14.   

 

Spring 2012 

Below is the analysis of the 5 open response problems from the 2012 Spring Final 

Exam. Tables 15 – 17 give the data for the Spring 2012 sections that is shown in Figures 

8 and 9.  

 

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 

Length of Problem Statement 3 2 3 2 3 

Problem Context 1 2 2 3 3 

Physics Principle 3 1 1 4 3 

Mathematical Complexity 1 1 3 3 4 

Average Difficulty Level 2 1.5 2.25 3 3.25 

Table 15: The difficulty measure scores for each of the 5 problems on the final examination in 

spring 2012.   
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Difficulty 

score 

Average grade 

section 1 

(154 students) 

Average grade 

section 2 

(152 students) 

Average grade 

section 3 

(190 students) 

Average grade 

section 4  

(165 students) 

Average grade 

section 5 

(170 students) 

2         

(Problem 1) 

17.8±0.5 19.0±0.4 18.4±0.4 18.8±0.4 20.5±0.3 

1.5    

(Problem 2) 

21.7±0.5 21.8±0.5 19.9±0.5 19.4±0.6 18.7±0.5 

2.25    

(Problem 3) 

17.8±0.5 18.2±0.5 17.7±0.4 12.2±0.4 20.1±0.4 

3      

(Problem 4) 

14.2±0.5 14.6±0.5 19.6±0.4 14.2±0.5 15.5±0.6 

3.25    

(Problem 5) 

12.0±0.6 11.2±0.5 13±0.4 9.7±0.4 16.4±0.4 

Table 16: The average student grade for each of the final examination problems by lecture 

section in Spring 2012.  The uncertainties shown are statistical only. 

 

 

Difficulty score Average grade of 

all 5 sections 

(831 students) 

Systematic 

uncertainties 

2        (Problem 1) 18.9±0.2 0.6 

1.5    (Problem 2) 20.2±0.3 0.5  

2.25   (Problem 3) 17.2±0.3 1.3  

3        (Problem 4) 15.8±0.3 1  

3.25    (Problem 5) 12.5±0.3 1.1 

Table 17: The average student grade for all students from the 5 sections for each of the final 

examination problems in Spring 2012. The uncertainties shown in the column with the average 

grades are statistical only. 
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Collecting all the data on a single graph in Figure 8 again shows the extent of the 

systematic uncertainties.  The color of each data point indicates the section and the error 

bar represents the statistical uncertainty.  

 

Figure 8: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections in Spring 2012.  The colors designate the different lecture 

sections.  The error bars represent the statistical uncertainty. 

 

 

Again, assuming that the systematic uncertainties are caused by random differences in 

the students, pedagogies, and grading of the sections, their effect is reduced by 

averaging the student grades from all the sections for each problem.  The result of this 

averaging process is shown in Figure 9.  The shaded region represents the 95% 

confidence level for a linear fit of the dependence of the average student grade on the 
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problem difficulty score.  The result of the linear regression is a Pearson correlation of 

97% with the null hypothesis probability of 0.01.   

 

 

Figure 9: The relationship between the average grade for each final exam problem and its 

difficulty level for all lecture sections combined in Spring 2012.  The error bars are dominated 

by the systematic uncertainty of the student grade illustrated by Figure 8 and calculated in Table 

17.   

 

4.2.5 Comparison of the problem difficulty measure of mechanics 

topics and E&M topics 

A summary of the average student final exam problem scores for all semesters of the 

introductory physics course is shown in Figure 10.  This graph is the same as that shown 

in Figure 1 except that the mechanics semesters are shown in green and the E&M 

semesters in red.  The gray area shows the 95% confidence level for a linear fit to the 
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data, the dashed line.  The Pearson correlation is 90% with a probability that there is no 

correlation of less than 0.001.   

 

This analysis shows that the problem difficulty measure is highly correlated with student 

performance on those problems as graded by standard classroom procedures when the 

TA have extensive preparation to teach the class [46].  The high correlation between the 

problem difficulty measure and student problem grade is consistent for both Mechanics 

problems and E&M problems demonstrating that the measure has construct validity 

 

Figure 10: The relationship between the average student grade and the problem's difficulty score 

for 20 problems from 4 semesters.  Mechanics problems are shown in green and E&M problems 

in red.  The error bars shown are dominated by systematic uncertainty. 
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4.2.6 Strength of category correlations 

 

To determine the internal structure of the four-category problem difficulty measure, I 

first looked at the correlation of each with student problem solving performance.  Table 

18 gives the correlation coefficient and probability of the null hypothesis for each 

individual category.  As can be seen, there is no significant correlation between the 

problem length and the student grade for each problem.   

 Length of 

Problem 

Statement 

Problem 

Context 

Physics 

Principle 

Mathematical 

complexity 

Correlation -0.20 -0.63 -0.74 -0.67 

Probability of 

null 

hypothesis 

0.40 0.003 <0.001 0.001 

Table 18：The correlation coefficient between each category and students’ grade 

 

As a confirmation that the Problem Length category has little predictive power, I left it 

out of the problem difficulty calculation and found a correlation of 88% with a null 

hypothesis probability of <0.001. This is very close to the 90% correlation with all 4 

categories. Figure 11 illustrates the success of the 3 categories difficulty measure. 
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Figure 11: The relationship between the average TA grade and the problem's difficulty score 

with average of 3 categories without Length of Problem Statement.  The error bars are 

dominated by systematic uncertainty. 

 

 

4.3 Internal Structure 

Another test of the validity of the determination of the problem difficulty is the 

investigation of the internal structure of the measure, in particular, the extent to which 

correlations between scores of the four categories agree with the expectation that the 

categories should be almost independent. The inter-category correlation matrix for the 

difficulty of all 20 problems used in the previous section is shown in Table 19. This 

correlation matrix is separated into the matrices for the 10 mechanics problems and the 

10 E&M problems in Tables 20 and 21.  All correlations reject the null hypothesis at the 

< 0.01 level. 
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These tables show that the categories are not independent.  Problem Context is highly 

correlated with both Physics Principles and Mathematical Complexity.   The connection 

between these two categories could be that instructors tend to write problems with 

difficult Physics Principles using unfamiliar and abstract contexts or it could mean that 

difficult Physics Principles arise primarily in those contexts.  This seems to be especially 

true in E&M (0.79 correlation coefficient). 

 

 Problem 

Context 

Physics 

Principles 

Mathematical 

Complexity 

Problem 

Context 
1 0.53 0.43 

Physics 

Principles 
 1 0.27 

Mathematical 

Complexity 
  1 

Table 1819: Inter-category correlation coefficients between difficulty category scores. for both 

mechanics and E&M.   

  

 

 Problem 

Context 

Physics 

Principles 

Mathematical 

Complexity 

Problem 

Context 
1 0.51 0.37 

Physics 

Principles 
 1 0.42 

Mathematical 

Complexity 
  1 

Table 20: Inter-category correlation coefficients between difficulty category scores for 

mechanics. 
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 Problem 

Context 

Physics 

Principles 

Mathematical 

Complexity 

Problem 

Context 
1 0.79 0.40 

Physics 

Principles 
 1 0.25 

Mathematical 

Complexity 
  1 

Table 21: Inter-category correlation coefficients between difficulty category scores for E&M. 

 

Based on the strong cross correlations between Problem Context and Physics Principles, 

I eliminated the Problem Context category and used only Physics Principles and 

Mathematical Complexity to determine the problem difficulty.  The result of the average 

of these two category problem difficulty measures gave a correlation of 88% with the 

average student problem solving grade with a null hypothesis probability of <0.001, 

essentially the same as using all 4 categories.  Figure 12 is the graph showing this 

correlation.   

 

For completeness, I also took the other combinations of two categories to correlate with 

student problem solving grade: Problem Context and Physics Principles gave a 

correlation of 78%  with a null hypothesis probability of <0.001; and Problem Context 

and Mathematical Complexity gave correlation of 77% with a null hypothesis 

probability of <0.001.  Both are lower than the 88% correlation using the average of 

Physics Principles and Mathematical Complexity to determine problem difficulty.  The 
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low correlation between these two categories of 0.25 also shows that they are nearly 

independent problem difficulty measures.  

 

 

Figure 12: The relationship between the average student grade and the problem's difficulty score 

with average of physics principle and mathematical complexity. 

 

In summary, I have described the evidence of construct validity, criterion validity, and 

validity of the internal structure of the problem difficulty measure. Based on these data, 

this measure simplifies to only 2 categories, Physics Principles and Mathematical 

Complexity which explain 77% of the student problem solving performance variance.  

However, this narrowing to 2 categories may be an artifact of the small range of 

instructors at one institution that constructed the final exam problems.   
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4.4 Inter-rater Reliability 

Another important test of the problem difficulty measure is its reliability. Reliability 

refers to the consistency of different applications of a measure. Inter-rater reliability is 

the extent to which different users of the measure get consistent results. In order to 

obtain good agreement, raters must agree on the meaning of the scoring categories as 

well as the levels within each category. To assess reliability, I conducted a study with 3 

raters who had considerable experience in physics education research, one of whom was 

myself, and the other two raters were both graduate students in physics education 

research and experienced teaching assistants.  One of these was also an experienced high 

school teacher.  

 

Since this test was done before the analysis of the student problem solving data, the 

raters used all four categories.   They used the categories to determine the difficulty of 

16 different free-response final exam problems, 8 from the calculus-based introductory 

mechanics course and 8 from the calculus-based introductory electricity and magnetism 

course, which they scored over a period of one month. Each rater independently scored 

the 16 problems and recorded their individual scores.  After rating the difficulty of the 

first four problems, the justifications for the individual ratings were discussed and, after 

this discussion, each rater could adjust their difficulty rating.  Then the raters met one 

week later and discussed their ratings for the next four problems and so on until the 

sixteen problems were complete.  Adjustments to the difficulty ratings after discussion 

were both small and rare.  The results of the independent scorings after discussion for all 

16 problems were then analyzed to determine reliability.  
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Figures 13 and 14 show the comparison the problem difficulty score of each of the other 

raters with my score (rater 1).  The Spearman correlation for one pairwise comparison 

was 94%, Figure 13, and 95% for the other, Figure 14.  Figure 15 shows the comparison 

between the two other raters.  These ratings have a Spearman correlation of 95%.  In the 

Figures, each point is a different problem and the dashed line is a linear fit to the data. 

The 95% confidence level of that fit shown as the gray region.  In all cases, the 

probability of no correlation, the null hypothesis, was < 0.001. 

 

 

Figure 13: The relationship between the assigned difficulty score by expert rater 1 and expert 

rater 2. Each point represents a different problem. 
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Figure 14: The relationship between the assigned difficulty score by expert rater 1 and expert 

rater 3. Each point represents a different problem. 

 

Figure 15: The relationship between the assigned difficulty score by expert rater 2 and expert 

rater 3. Each point represents a different problem. 
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The high pairwise correlations between the difficulty ratings of the PER graduate 

students and the rubric developer indicates a good agreement when these experts apply 

the problem difficulty measure. This level of reliability shows that the problem difficulty 

measure can be of research quality when used by PER researchers who have a 

substantial background in the study student difficulties in problem solving. 

 

4.5 Summary  

In this chapter, I have described the evidence of construct validity, criterion validity, and 

validity of the internal structure of the measure. The data used in this study were the 

grades of five problems from each of 3552 students in classes taught by 17 faculty 

members using 85 TA graders.   I then used the categories of the difficulty measure on 

each of the 20 different exam problems graded. As a result of the analysis describe 

above, the difficulty measure was been reduced to only two categories that explain 77% 

of the variance of student performance on typical exam problems for calculus based 

introductory physics. I have also shown evidence for the reliability of the problem 

difficulty measure.   

 

Despite the large sample size, this study has limitations.  The validity has only been 

tested at one institution, and the reliability data of 3 raters are from one PER group.   

 

In next chapter, I will discuss these limitations, possible applications for the instrument 

to measure the difficulty of physics problems, and future directions for research.  
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Chapter 5 Summary and Possible Applications of the 

Problem Difficulty Measure 

5.1 Summary of the results of this study 

In summary, I have developed an instrument for measuring the difficulty of the types of 

physics problems typically used in introductory physics courses by analyzing the 

wording and physics content of problems along with the mathematical processes 

required to arrive at a solution.  This measure is based on the presumed cognitive load 

placed on students trying to solve that problem.  Judging that cognitive load is based on 

information processing theory stressing the limited capability of short term and working 

memory together with the cognitive models of mental resources and ontological 

categories.  This study used the performance of a large student population on final 

examination problems in introductory physics courses to test the validity of this problem 

difficulty measure.  The study assumes that student performance in the authentic 

situation of solving quantitative multi-step physics questions made up by their 

instructors on a final examination is an indicator of question difficulty. These questions 

were found to be similar to those given in standard textbooks and are typical of 

instructor questions used around the country.  A detailed examination of a sample of the 

written student solutions showed that the questions were indeed problems for those 

students. 
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For ease of use, I chose to measure four identifiable categories that I hypothesized 

impact the cognitive load placed on students attempting to solve a problem: Length of 

Problem Statement, Problem Context, Physics Principles, and Mathematical 

Complexity.  Each category was scored on a scale from 1(least difficult) to 5 (most 

difficult) using a rubric developed for that purpose. These categories are similar to those 

proposed by other researchers based on their analysis of student problem solutions, the 

opinions of physics instructors, and the opinions of students [47, 31, 29, 30].  Some of 

the difficulty categories found in previous research [31], such as no topic cueing, 

extraneous or missing information, or lack of explicitness of the question, did not arise 

since these features did not occur in the introductory physics exam problems used by 

this large sample of instructors.  If they do arise, they might be subsumed into an 

expanded definition of problem context. 

 

Based on the student performance on final exam problems, the difficulty measure 

collapsed into only 2 categories: Physics Principles and Mathematical Complexity, with 

a Spearman correlation coefficient 0.88 for the 2 categories compared to 0.90 for all 4 

categories.  Using just these two categories of difficulty predicted 77% of the variance of 

student performance on their final exam problems. 

 

In this dissertation, I have described the importance of building a problem difficulty 

measure that can be determined directly from the problem statement (Chapter 1), the 

existing research that forms the empirical and theoretical foundation of its construction 

(Chapter 2), the categories and procedures for applying this measure (Chapter 3), and  
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the evidence for the validity and reliability of this measure (Chapter 4).  In this section 

(Chapter 5), I will discuss the limitations of the study as well as its implications, and 

possible applications for the instrument outside the scope of this study. 

 

5.2 Limitations 

This study was conducted at a single large midwestern research university which may 

not be indicative of the diversity of students and institutions around the country.  For 

example, the students in this population tend to be from the top 5% of their high school 

classes in a state with one of the best public-school education systems in the country.  To 

test the generality of these results, additional studies are necessary at a broader range of 

institutions encompassing different student populations, faculty, and pedagogy used in 

this course.   

 

In addition, the student sample was analyzed in aggregate as appropriate for a study of 

this size.  It is possible that the results could mask a problem difficulty diversity 

experienced by specific subpopulations of the students in this study.  In a larger study, 

additional analysis could determine if the results apply to those different student sub-

groups. 

 

It is important to note that this university provides a support program for the graduate 

teaching assistants who grade student problem solutions that emphasizes evaluating 

student problem solving.  Using student problem solving grades to indicate student 
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problem solving performance at institutions where this type of support does not exist for 

problem graders may not be appropriate.  This can be tested by determining the 

correlation of problem grades with the results of using a rubric developed to measure the 

extent to which student problem solving is expert-like [11]. 

 

The reliability data were from raters in a single physics education research group.  This 

group has a history of emphasizing physics education issues connected to student 

problem solving. Additional data are needed to determine if the results apply to a 

broader group of experts. 

 

5.3 Implications 

It is well known that physics instructors have different styles of writing problems that 

they use for their course. This makes comparing student problem solving performance 

with different instructors or over time with the same instructor problematic.  In its 

simplest use, the problem difficulty measure could determine if instructors are making 

consistent assessments of their students while using different final exam problems.  This 

would lead to a more consistent assessment of students taking a course than requiring 

instructors to have similar student grade distributions.   

 

Making sure that problems used for student assessment have a consistent range of 

difficulty is especially important if an institutional goal is to encourage the improvement 

of instructional techniques.  Determining a problem’s difficulty in a manner that is 
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independent of a particular problem format, or even its subject matter, allows 

researchers to test pedagogical interventions across different instructors, courses, and 

institutions.  This allows the comparison of an instructional change with the historical 

data from that course even though the instructors and examination problems are not 

identical.  The use of historical data decreases the statistical uncertainty of an analysis of 

the data because, if a course has been taught for many years, as is true for most 

introductory physics courses, there is a large amount of student performance data 

available.  The historical data comparison can be made more robust by using propensity 

analysis techniques [48].  

 

This work shows that written problems spanning the types typically used on exams in a 

calculus based introductory physics classes can be analyzed for their difficulty from the 

problem statement.  Because two of the original four categories tested were not 

necessary to predict student performance, the results call into question the problem 

difficulty measure’s inspiration of information processing theory.  Whether this result 

has uncovered a different theoretical framework that underlies problem difficulty or it is 

caused of the limited range of problem types used by these instructors is an open 

question.  Nevertheless, the two category measure predicts 77% of student problem 

solving performance.   Whatever the correct underlying theoretical construct of problem 

difficulty, it is likely universal, meaning that a similar measure for quantifying problem 

difficulty might be constructed for other quantitative courses.  Being able to determine 

difficulty of problems means that the different techniques used to teach students problem 

solving can be directly compared.  This could lead to a more standard technique of 
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teaching problem solving that would reinforce student learning across departmental 

boundaries. 

5.4 Application to classroom teaching 

Previously I have shown that an expert rater can use the instrument in a manner precise 

enough for research purposes.  However, this raises the question if the measure can be 

used by classroom teachers to help them guide the alignment of their student assessment 

with their course goals. 

 

To be of direct use to a single instructor in the classroom, they must be able to apply it 

without directly consulting an expert rater. In a small pilot study, two physics graduate 

students who were experienced TAs in introductory physics and in at least their third 

year of study, scored the difficulty of the same 20 problems given in Appendix B.   

These students had no affiliation or contact with the PER group.  The graduate students 

were provided with a written instruction sheet, brief definitions of each difficulty 

category, tables of how the 1-5 scale was applied for each category as in Chapter 4, the 

problem statement, a correct solution to the problem, and a blank scoring template table. 

If these were instructors using the instrument to determine the difficulty of their own 

problems, they would already be familiar with the problem statement and a correct 

solution to the problem. There was no other contact with the researcher and no organized 

contact among these graduate students. After one week they handed in their difficulty 

ratings of the problems. 
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Based on this small-scale study with minimal training, the results were not conclusive 

but encouraging enough to deserve future study. The assigned difficulty score by the two 

inexperienced raters showed correlations with the students’ performance although not as 

strongly as an expert rater.  The Spearman correlation coefficient between each 

inexperienced rater and the developer was 0.48 and 0.51 with a probably of no 

correlation of 0.04 and 0.02.  The data for this pilot study is in Appendix C.    

 

5.5 Conclusion 

This work reports on the development of an instrument to measure the difficulty of 

instructor written physics problems based on problem characteristics related to the 

presumed student cognitive load. Among the 4 identified difficulty factors tested, two 

account for almost all of the variance with student problem solving performance: 

Physics Principles and Mathematical Complexity.  The validity of the measure was 

based, in part, on its ability to account for 77% of the variance of the performance of 

3552 students on final exam problems in a one-year introductory physics spanning 

mechanics and electricity & magnetism.  These students were in multiple classes taught 

by 17 different professors.  The reliability of the measure was demonstrated by the 

agreement of three expert raters with a pairwise correlation of greater than 94%.   

 

The measure described in this dissertation quantifies the difficulty of authentic 

introductory physics problems based on an evaluation of an expert’s solution to the 

problem and the presumed student cognitive load engendered by the concepts required 
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for that solution. It improved on previous research in PER that only identified perceived 

difficulty factors [31] or ranked the relative difficulty of similar problems [29] [30]. 

Compared to a more limited measure developed for algebra [32], this instrument was 

able to score the difficulty of problems spanning all the topics in a one-year introductory 

physics. The two categories of difficulty found by this study, Physics Principles and 

Mathematical Complexity, agree with similar categories of content type including more 

steps, math, direction, and content found in previous study in the University of Illinois 

[30] and the number of necessary physics principles found in the Minnesota study [31].  

 

Having a standard technique for measuring problem difficulty, such as the one 

developed for this dissertation, will be a useful tool in ongoing research investigating 

effective modes of instruction, assessing the efficacy of instructional materials, and 

determining the consistency of classroom assessment of students.  This dissertation 

gives an existence proof for such a measure.  However, its generality needs to be the 

subject of further research involving students and instructors at institutions of higher 

learning that differ from the University of Minnesota where it was developed and tested. 
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Appendix A: Distribution of Students’ Scores on the 

Final Exam Problems Used in this Study. 

Fall 2016 
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Appendix B: Test Problems 

Fall 2016 

Final test of fall 2016 was given with a formula sheet which is shown below. 
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Fall 2014 

The final test of fall 2014 was given without a formula sheet. The 5 open response 

problems are shown in the original format below. 
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Spring 2016 

The final test of spring 2016 was given without a formula sheet. The 5 open response 

problems are shown in the original format below.
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Spring 2012 

The final test of spring 2012 was given without a formula sheet. The 5 open response 

problems are shown in the original format below. 
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Appendix C: Reliability Test 

 

Figures 16 and 17 show the relationship between the student scores on these problems 

and the difficulty rating of the two graduate students.  The gray area on each graph 

shows the 95% confidence interval for the straight line fit.  The correlation coefficient 

for non-expert rater 1 was -0.58 with a probably of no correlation of 0.007. For non-

expert rater 2, the correlation coefficient was -0.42 with of no correlation probability of 

0.068.  This data shows that the simple directions for applying the difficulty measure 

were sufficient to give an indication of relative problem difficulty but not reliable 

enough for decision making.  An additional study could exam whether there is a simple 

set of written instructions that would make this useful to a single, isolated instructor. 

 

Figure 16: The relationship between students’ average score and the assigned difficulty score by 

non-expert rater 1.  
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Figure 17: The relationship between students’ average score and the assigned difficulty score by 

non-expert rater 2.  

 


